

REPORT BY PROF. DR. H. ROHRBACH
OF PRES. ZS, ON

AMERICAN STRIP CYPHER.

Attached is an account prepared by the above P.O.W, on the oryptographic handling of the American Strip Cypher 0-2. The homework was done at Marburg on August 6, '1945 and was brought beak by Major W. Bundy, A.U.S.

T100m

14 th Sept. 1945
No. of pages: 14

DISTRIBUTION

British
D.D. 3
D.D. 4
D.D. (NoS.)
D.D. (MAW.)
D.D. (ATS.)

Lt. Col. Lea them
Cdr. Mandy
Major Morgan
Miss Mortimer (2)

TICOM

Chairman
S.A.C. (2)

Car. Bacon
Lt. Col. Johnson
Ma.jór Seaman
Lt. Car. Manson
Capt. Cowman
Lt. Fehl
Tioom Files (2)

U.S.

Op-20-G (2) (via Lt. Cdr. Manson) G-2 (via Lt. Col. Wiles)
A.S.A. (3) (via Major Seaman)

Director, S.I.D, USFET
(via Lt. Col. Johnson)
Col. Lewis Powell, USSTAF

D. From complex to femily
13. Depth and oorrelation of bigrams
14.' Extension of complexes (Methods)

- 15. Extension of complexes (Exeoution)

16. Refining of oomplexes
1.7. Supplementary raview
E. Philologioal solution
17. Trial
18. Solution
F. Establishment of strips and keys
19. The fixst 30 strips
20. The remaining 20 strips
21. The keys for the day
G. The deoipherment of the material
22. The automaton
\qquad
The Amerioan Strip Oipher 0-2

A. Introduotion

1. Personnel. The present report on the Amerioan Strip Cipher $0-2$ desoribes the systematio solution of this oipher by the speoial Servioe (Pers Z S) of the German Foreign Offios. The neaessary work was oarried out by the mathematioal-cryptographia seotion under the direotion of ORR Kunze Ph. D. His soientifio oollaborators in this task had been prepared by several year's speoiel training for deoipher work. They were Mrs. Annelise Hünke Ph.D., Miss Erika Pannwitz Ph.D., Assistant Professor Helmut Grunsky Ph.D., Studienrat Hansgeorg Krug, Professor Hens Rohrbaah Ph.D., and Mr. Klaus Sohultz. Towards the end of the work these were joined by Mr. Hans-Kurt Mueller Ph.D. of the linguistio-oryptographio seation as a philologist.

In drawing up this report, which was written jointly by the above oollaborators, only those steps oould be mentioned that eventually led to the solution. As a matter of faot, many detours had to be made and, through numerous individual attempts, observations and experience had to be gathered which could not be gone into here. Beeides an expanse of time of more than a year, the striotly enforoed prinoiple that the whole staff of aollaborators should take part in all the processes of the work was deoisive for its sucoess.

These oxyptographers had a large number of trained assistants at their disposal. In order to work and to take full advantage of the very ampletraffio Hollerithmachines of different types were employed
to a large extent. Finally, efter the oonclusion of the work, all messages were deoiphered by means of a speaial maohine (the automaton) invented by Mr. Kunze.
2. Seleotion of materinl. In sorting out the Amerioan diplomatia messages ourrently interoepted in 1940 and 1941 the share of telegrams enolphered with still unknown oiphers grew more and more. - From the peouliarities of the ofpher texts it was at.first assumed that they had been enolphered by means of a oryptographic machine. But steadily oontinued investigations; ahowed that the number of keys oould not be so large as might'be expeoted in the case of modern oryptographio maohines." In the sumar of 1942 the number of messages enoiphered with the new otpher had beoome so big that the possibility of
deaiphering them even in asse of a oompliaated aipher had to be taken into acoount. Therefore, in November 1942 sys tematio work was begun with a view to breaking a certain part of the material. This oonsisted of the messages of the intermassion troffio (marked by five-letter date groups ending in y or 1), and it was seleoted because here the number of identiaal beginnings of the oipher text and the size of the material were espeaially large.

B. Sorting out the material

3. Preliminary investigation. The first 40 letters of the oipher text of all inter-mission messages together with some teohnioal data (date, traffic, number of message eto.) were punched on Hollerith oards and sorted out from different points of view in lexioographio order. Out of these sorted oards ell those pairs of oards were seleoted meahanioally where at least five oonseoutive letters. in oorresponding plaoes ooinoided. The result was written down on liste. The following facte were observed:
(1) A large number of parallels (repetitions of groups of conseoutive letters) appeared, partly of oonsiderable length, some extending up to the flrst 30 letters.
(2) No parallel extended beyond the 30th letter.
(3) An unusually high peroentage of parallels broke off with the 15th letter.
(4) There were some parallels beginning wath the 16 th letter only, while the preosding 15 letters were free from doublets, i.e. differed from eadh other pairwise.
(5) Parallels ooourring in messages of different days were never of the same month, of ten the time interval between them was several months.
(6) Parallels were espeoially frequent in messages of the same dey.
(7) There was no parallel between messages before August 1, 1942 and messages after that date.

From these observations oould be deduoted that always 15 letters of the text were enoiphered in the same way [see (3) and (4)], in some oases even 30 letters [see (1) and (2)]. Further, the encipherment had to be dependent on the date [see (5) and (6)], any day key being oapable of being used several times. Finally on August 1, 1942 approximately there must have been a ohange of the means of enaipherment [see (7)].
4. Parallels. On the assumption that even after August 1, 1942, the same means of encipherment would be valid for en length of time, the material ooming in after that date was worked upon. Eaah. message was divided into double lines of 30 letters each. In each double line a left-hand line and a right-hand line of 15 letters each were distinguished. For each double line 'a Hollerith oard was punched indioating text, date, traffic as well as a four-figure number. With a daily average of 15 messages of an average length of 20 double lines 50.000 punched oards were on hand at the beginning of the work. At a later stage of the work the months January to March 1943 were added, so that about 80.000 punohed oards in all were available. From these oards all parallels of at least five letters each were sorted out and tabulated by means of Hollerith machines. Although with the immense size of the material a large number of the fire-letter-parollels and partly also of the six-letter-parollels were bound to be acoidental i.e. folse, they were still added in the hope that the shorter ones of these parallels would oonfirm eaoh other and that thus even the days with few ,messages , couzd be seoured,

33816

TOP DEORET

The result of, that tabulation oonfirmed all of the above-mentioned obsexvations (1) to (7) and the conolusions drawn from them. Beyond that it was observed that:
: (8) All parallels of at least 8 letters appeared vertically below each other, i.p. began in the same place of their respeative lines.
(9) In some oases four to five different days of the period in question belonged to a oertain day key. The total of the messages belonging to one and the same key was oglled olass.
(10) Within a olass longer parallels were also to be found in the interior of the messages. From the frequency of thetr oocurrence it could be conoluded that only relatively few possibilities of enotpherment were available for the lines of a olass. No law regulating the ohange of enoipherment of the lines oould be reoognized. All of the lines of a olass enoiphered in the same way were termed family.
hand lines.
(12) Beginning about Maroh 1, 1943, only the messages of the (very numerous) Berne traffic and of come minor missions had parallels Bo that the remaining traffic had to be eliminated from the material
of Marah 1943 .
5. Working hypothesis. From the outline of the aipher text and from the oocurrence of frequent initital parallels whose true reading could in all probabillty be considered known (e.g. striotiy confidential, from Murphy) judging from previously broken oodes it oould be deduced that, each litter of the true reading corresponded to exaotly one letter, different from it, of the ofpher text. Since moreover, genuine parallels ware always looated'exaotly one below the other, the essumption was obvious that the Ines of a famdly weripholphere wth colurn civhor in in that allifirat lofto were
 to bo ostaplishea for the solution of a faniily.

On the other hand it was known that so-callad atrip ciphers were being used in the Amerioan non-diplomatio oode servioe. The following peouliarities are charaoteristio for such a otpher:
(a) There are 25 different reading distanoes.
(b) Eaoh reading distance produces one substitution alphabet for sach strip.
(o). If. the same true reading is mad at two different distances the two oipher texts are free from doublets.

Peouliarity (b) coinoided with our assumption that we dealt dwith a oolumen odpher. Peculiarity (o) corresponded to our Observation (4) [see Na. 3] that there were parallels which were preceded or followed at the ends of the lines by longer passages free from doublets. Thus it was fairly certain and in the oourse of the work it beoame an absolute oertainty that the oipher in question was a strip oipher. To eeoh reading distanoe oorresponded a. famdy and viae versa, son that every olass (same day key) comprised 25 families in both halues.
6. Formation of classes. Now the direotion in which the work had to proosed was prescribed: firat, to find out the strongest oless, then to orystalilise one or several of the strongest families out of the strongest olass.

Through a careful study of the above parallels, furnished by Hollerith maohines, and considering oyolla correlations (by demanding that two days well correlated to a third should be well oorrslated to eaoh other), we suocseded to sort about two-thirds of the days into approximatsly 44 olasses. This number could still diminish. through the growing together of classes. As.a matter of fact, there were

\therefore POP $2, t^{\prime \prime}$ - $6-$ TICOM/I-89

40 different olasses after the solution. The days whioh oould not be inserted into this olass oalendar had mostly short or few messages, so that in faot about 80% of the total material was divided into olasses.

The strongest of these olasses (olass III) oontained oa. 3.000 IInes, The following days belonged to it: Sept. 17, 1942; Oot. '16, 1942; Nov. 27, 1942; Jan. 30, 1943, and Mar. 19, 1943. Hereinafter only this olass and its left-hand fomilies [see No. 4, (11)] will be dealt with. We were faced with the task of oonstruoting families out of its lines. There being 25 left-hand families, eqoh family consisted of 120 lines on an average or having regerd to the dispersion - of about 60 to 180 lines.
7. Lists of blooks. As the next step thorough experiments were made with synthelio aipher texts. Experienoe was gathered along the following lines: to what extent have any two lines of 15 letters each to ooinaide in parallels, triplets of letters (trigrams), pairs of letters (Bigrams) and single letters, so that, With roasonable safety, they may be regarded as belonging to the same family. Not being able to count on finding all the lines of a femily, we confined ourselves, at the beginning of the work, to those lines which had at least one bigram in common.

The next objeot was therefore, to oopy the 3.000 left-hand lines of the ohosen olass arranged acoording to bigreme. Sinoe every line contains 14 bigrams, it was bound to ooour in this list In 14 different places; the total list thus contains $14 \times 3.000=$ 42.000 lines. The list begen with the lines oontaining the bigram as as first and second lettars, followed by those oontaining ab, ac, $\because . . a z, b a, \ldots z z$. Then followed the same for the seoond bigrams, (i.e., bigrams in the second and third plaoe of the lines) and so on up to the fourteenth bigrams (in the fourteenth and fifteenth pleoes). $A s$ the lines having a bigram in oommon were separated on the list from those of the following bigram by a blank line, they formed little blooks for the eye (averaging 4 to 5 lines), so that this list was oelled list of blooks.

This work oould, of course, be carried out only with the add of Hollerith maohines; the punched oards of the seleoted olass vere already on hand and needed only to be sorted out from the total material. As several collaborators were to be oharged with the utilization of the lists of blooks, they were typed in multiplioate.

O. Construation of complexes out of nuolei.

' \quad 8. Nuolei and complexes. A oomplex was understood to be an aggregate of lines (of a briadth of 15 Ietters each) presumably, belonging to one and the some family on acoount of frequent ooinoidenoes of letters located below each other (good correlations). The number of lines was oalled the depth of the oomplex.

A Pirst attempt at oonstruating larger oomplexes direotly by joining isolated lines, proved a failure. This procedure was reoognised as unreliable by way of a trial on a model and.rejeoted.

First of all, 2-line-nuolei and 3-line-nuclei (i.e. oomplexes of 2 or 3 , lines resp. with especisilly good correlations) were produced as a starting point for the formation of complexes. The following types of nuolei were used:
(2) Continuous oorrelations were better than better the nuoleus. e.g. in the oase of 2-linemuciel [6] was better diepersed ones; a 3-linemnuoleus with a through-trigram was the totan $[5,1]$ or $[4,2]$; being equal - better than one with aram was the total of oorrelations
(3). When in a 3-1
oorrelation - e.g. [2,2,1] - nus. with through-bigram tha additional ooinoidence continued through all three from the faot that yet another valued lees then one in whioh the three lines, the nuoleue was of lines were all located in difeererrelation of the several pairs trigram, see above). its this
1t, Thus a 3-line-nuoleus was generally the better the fewer letters oride.

Thl faluation of nuclei was based on research on probabil1ty donceining the expeasea on research on mathematioal dordelation types in acoidentai (ition about the different batle fertly pairs of lines and (ise not, belonging to one and the investigations of the true rand triplets of lines as woll as The later work, too, was ourrently on the ocourrenoe of parallels. reeearch, the very extansive oalculatiomented by purely mathematical numerous tables and nomograms. Thisions of which were laid down in further within the boope of this report.

10. Production of nuolei mo

containec a five-lettermparail The 2-line-nuolei, insomuah as they the searah for parallele (see No, had already been asoertained during 2-1ine-nualei and 3-1ine-nuolei, in the 14 orer within eaoh blook :
(1) The parallels immediately following the through-bigram were underlined.
(2) Letters ooourring repeatedly in eaoh oolumn were enoiroled.
(3) The nuolei of the desired type of oorrelation were sorted out Of these three operations only the third required qualified assistants. The result was about 50 2-line-nuclei and 360 3-1inenuolei, a considerable portion of which, aocording to research on mathematioal: probability had to be oonsidered os genuine.
11. Comparison of nuolei. In order to join several nuclei to complexes, they had to be oompared pair by pair, and those pairs of nuclel had to be sorted out which showed a speoially large number of ooinoidenoes in oorresponding oolums. For this purpose each nuoleus was. punched into a Hollerith card after a speoial method. ' When punched oards of two nuolei were put on top of each other, two holes oorreepondin and only: if they represented the same letter in holes in the upper margin of the punching apart from the steering holes in the pair of cards thus equalled thea. The number of throughof the pair of nuolei through ooinoiaing lettere of correlations

With the aid of punohed oards it was possible to have 300 to 400 nuolei ocmpared with a oertain nuoleus by intrained assistants within one hour.

Pairs of 3-line-nudlei were sorted out if they oontalned at - least. \& oorrelations, pairs consiating of a 3-line-nuoleus and a 2-1ine-nucleus, if they ointained at least 6 oorrelations. (Expeoted values in the cose of an average of 36 and 25 resp. different letters in the oolums of 3-line-nuolei and 2-linenuolei resp.: 4 and 3 oorrelations resp.)

The result of the joining of $2-1$ ine- and 3-line-nualei were. 4-1ine-, 5-line-, and 6-line-nuole1.
12. Further prooessing. As had been done for the 2-lineand 3 -line-nualei, Holleri th-oards were punched for the new 4-line-5-1ine-, and 6-line-nuclei. The new nuolei were oompared With each other as well as with the 2-line- and 3-line-nuolei. In this way the depth of the nuolei was inoreased sucoessively. In the oase of nuclei of the depth of 10 or more the procedure was modified insofar as no longer all the letters of the nuoleus but only the frequent letters of a oolumn were punched into the oard,

The meohanioal oomparison of nuolei by means of punohed oards oould only serve to find suitable building stones for the construotion of larger complexes out of the great quantity of material.

In any aase before the joining of a pair of nuolei to a bigger nuoleus the oorresponding lines were written down and tested by an expert as to the quality of the nuolei, the quality of the correlations of each line in the whole oomplex, a possible decomposition into several oomponents, the number of the dieferent letters, and resemblanoe to a true reading (parallels eto.). A latge number of nuclei eliminated itself during the oourse of the work, beoause an ettempt at obtaining greater depth yielded only vague results.

The fusion of nuolei resulted in about 40 omplexes of a depth of about 20.1ines each.' For further prooessing they were marked with oapitals A, B, ..., AA, BB, ...

There being only 25 families, one had to take into aooount that some of those 40 complexes either belonged to one and the same family or that a ounsiderable portion of the oomplexes whe so badly oonstruoted, that they could not be coordinated to any fomily. There were indeed pairs of complexes which presumably belonged to the same family, sinoe - in spite of all efforts to keep the oomplexes separated - ever and again there were found nuclei whioh showed good oorrelations with the two complexes of the pair. One of those pairs ounsisted of the oomplexes E and K .

D. From oomplex to family

13. Depth and oorrelation of bigrams, Among the oumplexes arising from the fusion of 3-1ine-nuclei there was a partioularly good one. It had been named E and inoluded 21 lines; it was called $E 21$. A measure for the quality of a oomplex was obtained in the following way: The 15 oolumn of a oomplex of the depth t were split upinto 14 pairs of oolumns, in each of these pairs of columns the number of different bigrams was asoertained and the "
sum of all these numbere divided by 14; the result was a value t_{b}^{\prime}, which was oolled the depth with referenoe to bigrams or in short bigram depth of the aomplex. The quotient $t_{b} /{ }^{t}$ gave a measure 'for the quality of the complex, and the ocmplex was the better, the smaller the value of $t_{b} / t_{\text {. }}$.

The next atep oonsisted in studying the complexes $A, B, C . .$. whether some of them - in analogy to the 3-line-nuolei - were oapable of growing together into a bigger one. As preparatory work for this a true reading experiment wes made in order to obtain a oriterion for the minimum number of bigram oorrelations necessary for the fueion of two complexes. A bigream oorrelation was aid to exist, if in a pair of oolumns the some bigram ooourred in the one as well as in the other complex. It appeared (see oonolusion of No. 12) that the complex E21 grew together with a complex $\mathrm{K}_{16}(\mathrm{t}=16)$ to a oomplex of the depth $\mathrm{t}=37$; it was named E_{37}. The value t_{b} / t for E_{37} when oompared with that for E_{21} ehowed a silight deterioration whioh suggested the existence of folse lines (i.e. not belonging to the complex).
14. Bxtension of complexes (Methode). The next tast was to rise gradually from the complex E37 to the corresponding family through the addition of new lines from olass III. The family of any (pure) oomplex C was oalled the family of C, and trom methods were developed by whioh additional lines to C oould be found from olass III.:
(a) Blaram method. For each pair of oolums of 0 the "bigrams were oounted statiatically and oompared with the oorresponaing bigrams of "all remaining lines of olass III. In this way a bigram statistio was obtained, which furnished the bigram oorrelations with C.for every line of olass. III hot belonging to C. From a speoial nomogram oould be read how many lines with a presoribed number of blgram oorrelations might be expeoted aooidentally for a oomplex of the oonsidered bigram depth, and thus a new poseibility of testing the quality of C was obtained. The lines with the most bigram oorrelations oame into question as oandidates for the family of C .
(b) Weight method. In each oolum of C the frequenoy of eaoh letter a, b, \ldots, z was oounted, then - for every onlumn separately theee sums were arranged aooording to size and the letters divided into three groups (frequent, medium, rare). Frequent letters reooived the weight 2 , medium ones the weight 1 , rave ones the weight 0 . Finally in every line of alass IIr we. wrote above each one of the 15 letters its appropriate weight (whioh in general was different for different oolumns) and by adding the 15 individual meights the total weight of the line was asoertained. The lines of highest weight (so for as they dia not belong to C already) were also oandidatee for the C family, but ooinoided partly with the lines obtained by method (a).

By ereating a pillar for each (line-) weight - representing the number of lines from olass III with this waight - on a soale running from left to right, a graphio representation of the dietribution of weights in the form of a bell-shaped Gauss ourve was obtained, However, on the right-hand eide of the ohief maximum and distinotly separated from it, there arose above the highest weights another, emaller maximum, whioh derived from the lines of olase III belonging to the cifomily. By marking the lines of C speaially (e.g. oolouring them) one oould praotioally read from the seoond maximum how many lines from olass III could still be added.' The

-
T100M/I-89
ssonnd maximum was the more marked, the purer the underiying complex, i.e. the fewer felee lines it oontained. Thus the graphio representation gave an additional possibility of testing the quality of a oomplex.
15. Extension of aomplexes (Exeoution). By applying and oombining these two methods (a) and (b) repeatedly E37 was extended to. E51; thenoe to E95, then to E_{120} and finally to E_{135}. The seleotion of lines to be added from the oandidates obtained by methods (a) or (b) was a task to be undertaken with partioular care. Only rarely the bigram correlations or the maximun weights were valued by themselves. In general both faotors were deaisive jointly. Moroover, the quantity of lines that had beon found in this, way was investigated as to whether ourroborations oocurred through bigram oorrelations of these lines anong themselves. Where oorroboration was lacking lines were exoluded if need be. Soon, however, doubts arose as to whether it was permissible to apply methods (a) and (b) for adding new lines any number of times. For one had to take into aooount that wrong lines might be added with every step, which might involve additional wrong lines with the next step and thus might deteriorate the oomplex more and more. A procedure was devised therefore to eliminate wrong lines as far as possible.

16. Refining of oomplexes. This prooedure was as follows:

(o) Method of reproduation. The oomplex E95 was split into two parts E_{I} and $E_{I I}$. EI was identioal with E51; EIIoonsisted of the 44 lines that had been added when E_{51} was extended to E95. Then methods (a) and (b) were applied to EII. Had all lines of $E_{\text {II }}$ been gsnuine, E_{I} should have been reproduced substantially out of it. This, however, was not the oase. Besides many other lines of oless III only 26 lines of EI were reproduced. Now these 26 lines were coneidered as a new starting complex E26 and methods (a) and (b) were applied to it again etep by atep. Thus we, prooeeded, even more scrupulously than before, from E26 to E50, thenoe to E75 and Pinally to E89. To eliminate wrong lines the . weight method was applied after eaoh step even in a refined form, viz." the letters of each oolumn were divided into five instead of three olasses, with the weights of $4,3,2,1,0$ ecoording to frequenay. Again lines that were found wanting on thorough examination were eliminated.

"1'

The: oomplex E89 thus obtained was handed over to a philologist for further treatment. At the same time, for safety, Egg Just as praviously E_{95} was treated acoording to method (0). It was split into two parts. $E_{I I I}=E_{50}$ and $E_{I V}=E_{89}-E_{50}$, and the attempt was made to reproduce EIII out of EIV. This time the attempt wae muah more suocessful. 43 lines were obtained again out of E_{50}. Theee Iines were taken as a new starting complex E_{43} and extended to a complex'E82 by methode (a) and (b). It had been planned to treat this oomplex - whioh oould with great probability be regarded as pure - With the same methods (a), (b) and (a), in order to extend it to a depth of about 120 lines while preeerving its purity as far as poesible. But this proved unneaessary as in the meantime the philologist had elready suooeeded in solving oomplex E_{89}.

DO
yor-gegray
17. Supplementary Review. The key valid for olass III having been oompletely solved, all lines were deoiphered subsequently. In that way all the families oould be established and. the quallity of the complexes worked on could be soertained. Complex E95 proved to oontain about 31 (30\%) wrong lines, oomplexy E89 eight (9%), and oomplex E82 two (2.5\%). The oorresponding family inoluded oa. 145 lines altogether.

Apart from the complexes E_{n} other oomplexes were treated in a similar way. Great diffioulties arose, however, in the oonstruotion of further oomplexes with suffisient depth. The methods applied had foroibly led to the most favourable family, i.e. the family with the best oorrelations. Probability considerations had show that suoh a famlly oould be oounted upon. For the discovery of this :fomily, however, it had been neoessary to plan the preparatory work desoribed in seotions B and C on as wide a bosis as had been donę.

E. Philologiaal solution.

18. Trial. The usual frequenaies of letters and combinations of letters in the English language oould not be applied to this oomplex unrestriotediy: firstion account of the peouliar style of the telegrams, then beoause the complex was oomposed of 89 small pieces from different telegrams without any inherent conneotion, and finally, beaause we dealt only with well-oorrelated lines. Therefore we began with a trial solution on a model complex. From several true readings taken from messages enooded with the Grey and Brown Codes, we shose arbitrarily 100 lines of 15 letters each and wrote them one below the other. This gave 15 oolumns with a depth of 100 letters eaoh. These 15 colums were enaiphered with 15 different substitution alphabets. The solution yielded oertain deviations of frequenoies from those of the usual English language. A striking peak was formed by the bigram -in-. The combination-tion was notioeably frequent as well. On the other hand -th- belonged to the less frequent bigrams, oontrary to the ratio of frequenoy in the usual English language.
19. Solution. The text of E_{89} - the appropriate family to be oolled E for short - oontained the frequent oombination qqjw in the last 4 oolumns, twioe even the oombination pqqjw. The interpretations -tion and ation were obvious. This hypothesis furmshed one interpreted letter for each of the last 4 oolumns. In the other oolumns as well striking repetitions of letter-aombinations were to be found, above. all frequenoies of bigrams. The bigram-in-was substituted'in everal paire of columns by way of en experiment.

Additional help oame from another side. The family E* reoiprooal to E (i.e, the ooordination of true reading elements to oipher elements in E^{*} is equal to the ooordination of oipher elements to true reading elements in E) was made use of. It was known that the E^{*} family contained'among.its lines the initial line of a message, which oould easily be interpreted. Inverting the resulting correspondences of letters gave one letter - more or less rare - for each oolumn. of E89.

The study of bigrom frequenoies in the text E_{89} was continued oarefuily and they were compared with those of the model mentioned above. E.g. if in one pair of columns the bigram xy ooourred several times, the bigran ry twioe and the bigram wy three times, the Interpretations -in, -an, -on or -in, -un, -an were obvious.

TICOM/I-89

After the greatest possible number of bigrams had been Interpreted and substituted in this systematio way, parts of words began here and there to shine forth from the text. Filling the gaps furnished new values of letters, and the oomplete solution progressed practioally of its own acoord, onoe this stage had been reached.

F. Establishment of strips and keys

20. The first 30 strips, Iffer E8g hed been solved, 1. θ°. after the true reading - though not completely at first - had been established for the 81 genuine lines, we reoeived a substitution alphabet, still oontaining gaps, for each of the 15 lines. This alphabet, made possible the coordination of oipher-text letters to true reading letters for the different oolumns. In order to oomplete the alphabets the true reading had to be established for as many more lines as possible. This was arrived at in two ways. On the one hand all the lines of the materiol were deoiphered with these substitution alphabets. In this way all those lines, of the E family were found whioh had not been disoovered by the statistioal methods previously applied; that gave about 65 additional lines. On the other hand we sorted out the lines of the E^{*} family from the total material of olass III. This E* family oomprised approximately 60 ilnes. In this way all gaps in the 15 alphobets oould be filled. With these oompleta alphabets the first 15 strips were oonstruated on the arbitrary assumption that in the E famlly coordinated oipher elements and olear elements were loaated side by side on the strips. Since on this assumption the letters on the strips could be arranged in a single-i.e. not deoomposable - ayole, this arbitrary arrangement oorrespondedto an odd power of the original arrangement, as it was on the original strips used for the enolpherment of the texts. Later on, when the original arrangement had been discovered through systematic studies of the - psyohologioally conditioned - cipher habits of the oode olerks with the different missions, it beoame evident that it was the eleventh power of the original arrangement. .

By' means of the 15 finished strips all or' the left-hand lines of olass III could be completely deoiphered. The resulting true reading oould be oontinued into the right-hand lines in many Eplaces, so that there the ooordinations of oipher elements to olear, elements - neoessary for the oonstruotion of further strips were given: In this way the 15 strips employed for the enoipherment of the right-hand lines were obtained step by step. And thereby all 30 strips neoessary for the deaipherment of oloss III were available,:
21. The remaining 20 stripg. The next task was to find out whether and to what extent these 30 known strips appeared in other olasses, as, well. This task was essentially simplified by the faot that aftex studying the true readings in olass III the true reading In oharaoteristio plaoes oould - in all probability - be ocnsidered as known for other olasses as well. Were for a definite olass in one 1ine.
$g_{1} g_{2} g_{3} \ldots$ aipher elements, $k_{1} k_{2} k_{3} \ldots$
the "oorresponding clear elements,
in a second line
$g_{1}^{t} g_{2}^{t} g_{3}^{*} \cdots$ oipher elements, $k_{1}^{4} k_{2}^{d} k_{3}^{\prime} \ldots$
the oorresponding olear elements

tep saciant

$$
s_{1} \text { the atstanue } g_{1}=k_{1}=a, g_{1}^{\prime}-\dot{k}_{1}^{\prime}=a^{\prime}, g_{1}^{\prime \prime}-k_{1}^{\prime \prime}=a^{\prime \prime} ; \ldots
$$

$$
S_{2} \text { the diatanoe } g_{2}-k_{2}=a, g_{2}^{\prime}-k_{2}^{+}=a^{\prime}, g_{2}^{\prime \prime}-k_{2}^{\prime \prime}=a^{\prime \prime}, \ldots
$$

$$
S_{3} \text { the distanoe } g_{3} k_{3}=a, g_{3}^{\prime}-k_{3}^{2}=a^{1}, g_{3}^{n}-k_{3}^{n}=a^{\prime \prime}, \ldots
$$

The next task was to verify whether any of the atrips already Gavailable enswered the conditions mentioned above for $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~s}_{3} \ldots$ tWhen olass I, ranking next in size to olass III was investigatea in this way, 18 of its strips tumed out to be already known from tolaps III.
2. 22. The keys for the day. Thereby the problem of the total number of the different strips was solved: sinoe 12 strips were added to 18 known ones 20 more were to be expeoted in addition to the 30 known ones. This was oonfirmed when all different classes one after the other, were treated acaording to the abovementioned method. In the ocurse of this treatment the unknown strips appearing in individual oolums oould be oonstruated by supplementing the true readings in these columns. As soon as all rop the: 50 strips and all of the 40 day keys were finished, the oalendar' oould be oompleted acoording to which the dey keys were apportioned to the individual days. Herewith all messages onoiphered with the system 0-2 oould be read.
G. The deoipherment of the material.
23. The automaton. As was to be foreseer at the outset the total material oould not be deciphered by hand on aooount of its 1mmense size. The number of available qualified workers with ouffioient knowledge of English was too small for that. Deoiphering a double line through moving the strips by hand required 6-7 minutes on an average, so that the work on the roughly 80.000 double lines would have taken a whole year, provided that 40011 aborators had worked, on it 8 hours daily. It was, therefore, of the utmost importanoe that the automation ahould be avallable for the dealpherment of the material at the time when 2.21 keya had been worked out. It is not possible to desoribe the mahine more expliaitly within the soope of this report, but we should like to say briefly the following about the method of its working:

The deoipherment of a double line oonsists of two operations: (1) arranging the strips so that the oipher text letters are made to Ile in a row, (2) seleoting the line containing the true reading out of 25 parallel lines. The adjustment of the strips that move up ahd down, so thiat the true reading oan be read horizontally, is aooomplished by the machine quite automatically. The oipher text may be touched by hand on the keyboerd of a typewriter, or be taken by means of a sounding devioe from the Hollerith oards that had already been punohed. Finding"the triue reading is simplified by the faot that the letters on the 'strips are printed in two different weights, the most frequent letters in the English language (about 80% of true reading) are printed in a heavy tone, the others in a light tone. A line oonsisting of 45 lettere ohosen arbitrarily would oontain里 -1 ,

